Observations of Mesoscale and Microscale Space Weather Processes on the Canadian CASSIOPE Enhanced Polar Outflow Probe (e-POP)

Andrew W. Yau¹, H. Gordon James²

¹University of Calgary, Canada
²Communications Research Centre, Canada
CASSIOPE

e-POP Science Payload: to study space storms – plasma outflows, radio propagation, aurora, and ionosphere non-uniformities

Small-Sat Bus: Generic, low-cost satellite bus to address needs of future Canadian small-satellite missions

Cascade Technology Payload: to demonstrate high bandwidth store-and-forward data delivery
Outline

1. e-POP Science Targets
 Physics of space weather effects in ionosphere-thermosphere

2. Meso-/Micro-scale Space Weather Processes
 Existing Observations

3. e-POP Instruments & Measurements

4. Planned e-POP Studies of Space Weather Processes

5. Conclusions
e-POP Science Targets

Physics of space weather effects is overarching theme.

- Ion acceleration and outflow

 Meso-scale outflow; micro-scale wave particle interaction

- Ionospheric irregularities and scintillations

 3D irregularities; GPS occultation

- Effects on radio wave propagation

 Trans-ionospheric radio wave propagation

- Thermospheric expansion

 Thermosphere heating, composition changes, and escape

- Aurora

 Small-scale auroral and auroral current structures
2. Meso-scale and micro-scale space weather processes

Existing Observations
Thermal and Suprathermal Ion Outflows

Observations (Cully et al. 2003)

- Suprathermal (>10 eV) >16000 km (DE-1)
- Suprathermal (>15 eV) < 9000 km (Polar)
- Thermal (<20 eV) < 9000 km; (Akebono)

Physical Significance

- Outflow rate increases >10-fold at high Kp
- Significant H⁺ acceleration above 9000 km
- Significant O⁺ acceleration below 9000 km
- Large-scale depletion of ionosphere!?
- Space weather effects?
Ion Heating and Lower Hybrid Solitary Structure

Observations

10- to 100-m ion heating and lower hybrid solitary structures

Transversely accelerated ions

- Heated ions at several eV
- 63±25 m width

LHSS signatures

- Density depletion ~15%; ~10 ms
- Associated w/ TAI and/or BB VLF

Physical Significance

Large field and acceleration at small scale

Affect larger-scale space weather effects?

Ion distributions at 980 km (Burchill et al., 2004)

“Spikelet” electric fields at ~600 km (LaBelle et al. 1986)
Small-scale Auroral Structures

Observations

Auroral spatial scales:

10-100 km (bands),

to 0.1-1 km (curtains)

Auroral curls

Scale ~ 4 km; ~2 s

Anti-clockwise rotation; 10 km/s

Physical Significance

Are small (sub-km) structures important?
Thermospheric Response to Magnetic Storms

Observations

Thermosphere expansion (temperature and density increase) in magnetic storms

Equatorial propagation of expansion

More localized response to substorms

Physical Significance

Large neutral wind; composition change

Anomalous orbit decay in polar LEO

From CHAMP at 410 km (Sutton et al. 2005)
3. e-POP Instruments and Measurements
e-POP Mission Approach

In-situ, small-scale plasma, waves, fields at highest resolution

Radio wave propagation: **ionospheric irregularities in 3D**

Fast imaging of **meso-scale** auroral morphology

Polar orbit in key transition region (325 \pm 1500 km; 80 \pm inclination)

3-axis stabilized S/C for imaging and high-resolution measurements

Large data capacity (TB storage, $>$10GB/day, $>$300 Mbps downlink)
<table>
<thead>
<tr>
<th>Science Instrument</th>
<th>Principal Investigator</th>
</tr>
</thead>
</table>
| IRM Imaging ion mass spectrometer | Dr. Peter Amerl
University of Calgary |
| SEI Suprathermal electron imager | Dr. David Knudsen
University of Calgary |
| NMS Neutral mass/velocity spectrometer | Dr. Hajime Hayakawa
JAXA/ISAS, Japan |
| FAI Fast auroral imager | Drs. Sandy Murphree and Leroy Cogger
University of Calgary |
| RRI Radio receiver instrument | Dr. Gordon James
Communications Research Centre |
| MGF Magnetic field instrument | Dr. Donald Wallis
Magnametrics and University of Calgary |
| GAP GPS attitude/profiling experiment | Dr. Richard Langley
University of New Brunswick |
| CER Coherent EM radio tomography | Dr. Paul Bernhardt
Naval Research Laboratory, USA |
e-POP Plasma Outflow Instruments:

will measures ions, electrons, and neutrals at up to 10-ms resolution.

Space storm results in electrical current and plasma outflow in the ionosphere.

IRM, SEI, NMS, MGF will measure ions, electrons, neutrals, and electrical currents.
4. Planned e-POP Studies of Space Weather Processes
Examples of Planned e-POP Studies

- Detailed dynamical characteristics of polar wind; Role of escaping atmospheric photoelectrons
- Exosphere neutral outflows: Role of polar wind, charge exchange, and other acceleration processes
- Micro-scale ion heating/energization characteristics: Connections between aurora, ion energization and upflow
- Wave particle interaction associated with ion energization: detailed wave propagation characteristics
- Plasma instabilities: creation of F-region density structure, growth and saturation of instabilities, constraints on flow
Planned e-POP Observations and Studies

- In-situ Observations*
 - Plasma, Neutral, Magnetic Field
 - Radio (Electric Field)
 - Optical (IR and visible) imaging
 - Radio occultation (GPS, beacon)
- Coordinated ground observations*
 - Radio: SuperDARN, CADI etc
 - Others: CGSM, …
 - Active Experiment: HAARP etc
- Data assimilation and modeling*
 - Kinetic, MHD, …

* Collaborative opportunities being pursued
E-POP Science Team & Participating Organizations

Communications Research Centre: HG James, P Prikryl
Royal Military College: JM Noel
U. Alberta: R Rankin, C Watt
U. Athabasca: M Connors
U. Calgary: P Amerl, L Cogger, E Donovan, D Knudsen, JS Murphree, T Trondsen, D Wallis, A Yau
U. New Brunswick: A Hamza, PT Jayachandran, D Kim, R Langley
U. Saskatchewan: G Hussey, S Koustov, G Sofko, JP St Maurice
U. Victoria: R Horita
U. Western Ontario: L Kagan, J MacDougall
York U: J Laframboise, J McMahon
JAXA/ISAS, Japan: T Abe, H Hayakawa, K Tsuruda
NRL, USA: P Bernhardt, C Siefring
UNH, USA: M Lessard